第11章 基本粒子和自然的力(1) (1/2)
巨星小说网 www.jxdlss.com,时间简史无错无删减全文免费阅读!
亚里士多德相信宇宙中的所有物质由四种基本元素即土、气、火和水组成。有两种力作用在这些元素上:引力,这是指土和水往下沉的趋势;浮力,这是指气和火往上升的倾向。将宇宙的内容分割成物质和力的这种做法一直沿袭至今。
亚里士多德相信物质是连续的,也就是说,人们可以将物质无限制地分割成越来越小的小块。即人们永远不可能得到一个不可再分割下去的最小颗粒。然而几个希腊人,例如德谟克里特,则坚持物质具有固有的颗粒性,而且认为每一件东西都是由大量的各种不同类型的原子组成(原子在希腊文中的意义是“不可分的”)。争论一直持续了几个世纪,任何一方都没有任何实际的证据。但是1803年英国的化学家兼物理学家约翰·道尔顿指出,化合物总是以一定的比例结合而成的,这一事实可以用由原子聚合一起形成称作分子的个体来解释。然而,直到本世纪初这两种学派的争论才以原子论者的胜利而告终。爱因斯坦提供了其中一个重要的物理学证据。1905年,在他关于狭义相对论的著名论文发表前的几周,他在发表的另一篇文章里指出,所谓的布朗运动——浮在液体中尘埃小颗粒的无规则随机运动——可以解释为液体原子和灰尘粒子碰撞的效应。
当时就有人怀疑,这些原子终究不是不可分割的。几年前,一位剑桥大学三一学院的研究员汤姆孙演示了一种称为电子的物质粒子存在的证据。电子具有的质量比最轻原子的一千分之一还小。他使用了一种和现代电视显像管相当类似的装置:由一根红热的金属细丝发射出电子,由于它们带负电荷,可用电场将其朝一个涂磷光物质的屏幕加速。电子一打到屏幕上就会产生一束束的闪光。人们很快即意识到,这些电子一定是从原子本身里出来的。新西兰物理学家恩斯特·卢瑟福在1911年最后证明了物质的原子确实具有内部结构:它们是由一个极其微小的带正电荷的核以及围绕着它公转的一些电子组成。他分析从放射性原子释放出的带正电荷的α粒子和原子碰撞会引起偏转的方式,从而推出这一结论。
最初,人们认为原子核是由电子和不同数量的带正电的叫做质子的粒子组成。质子是由希腊文中表达“第一”
的词演化而来的,因为质子被认为是组成物质的基本单位。然而,1932年卢瑟福在剑桥的一位同事詹姆斯·查德威克发现,原子核还包含另外称为中子的粒子,中子几乎具有和质子一样大的质量但不带电荷。查德威克因这个发现获得诺贝尔奖,并被选为剑桥龚维尔和基斯学院(我即为该学院的研究员)院长。后来,他因为和其他人不和而辞去院长的职务。一群战后回来的年轻的研究员将许多已占据位置多年的老研究员选掉后,曾有过一场激烈的辩论。这是在我去以前发生的;我在这场争论尾声的1965年才加入该学院,当时另一位获诺贝尔奖的院长奈维尔·莫特爵士也因类似的争论而辞职。
直到大约30年以前,人们还以为质子和中子是“基本”粒子。但是,质子和另外的质子或电子高速碰撞的实验表明,它们事实上是由更小的粒子构成的。加州理工学院的牟雷·盖尔曼将这些粒子命名为夸克。由于对夸克的研究,他获得1969年的诺贝尔奖。此名字起源于詹姆斯·乔伊斯神秘的引语:“Three quarks for Muster Mark!”
夸克这个字应发夸脱的音,但是最后的字母是k而不是t,通常和拉克(云雀)相押韵。
存在有几种不同类型的夸克——有六种“味”,这些味我们分别称之为上、下、奇、粲、底和顶。20世纪60年代起人们就知道前三种夸克,1974年才发现粲夸克,1977年和1995年分别发现底和顶夸克。每种味都带有三种“色”,即红、绿和蓝。(必须强调,这些术语仅仅是标签:夸克比可见光的波长小得多,所以在通常意义下没有任何颜色。这只不过是现代物理学家似乎更富有想像力地命名新粒子和新现象的方式而已——他们不再让自己受限制于希腊文!)一个质子或中子由三个夸克组成,每个夸克各有一种颜色。一个质子包含两个上夸克和一个下夸克;一个中子包含两个下夸克和一个上夸克。我们可以创生由其他种类的夸克(奇、粲、底和顶)构成的粒子,但所有这些都具有大得多的质量,并非常快地衰变成质子和中子。
现在我们知道,不管是原子还是其中的质子和中子都不是不可分的。问题在于什么是真正的基本粒子——构成世界万物的最基本的构件?由于光波波长比原子的尺度大得多,我们不能期望以通常的方法去“看”一个原子的部分。我们必须用某些波长短得多的东西。正如我们在上一章所看到的,量子力学告诉我们,实际上所有粒子都是波,粒子的能量越高,则其对应的波的波长越短。所以,我们能对这个问题给出的最好的回答,取决于我们装置中的粒子能量有多高,因为这决定了我们能看到的尺度有多小。这些粒子的能量通常用叫做电子伏特的单位来测量。
(在汤姆孙的电子实验中,我们看到他用一个电场去加速电子,一个电子从一个伏特的电场所得到的能量即是一个电子伏特。)19世纪,当人们知道如何去使用的粒子能量只是由化学反应——诸如燃烧——产生的几个电子伏特的低能量时,大家以为原子即是最小的单位。在卢瑟福的实验中,α粒子具有几百万电子伏特的能量。更晚的时代,我们获悉如何使用电磁场给粒子提供首先是几百万,然后是几十亿电子伏特的能量。这样我们知道,30年之前以为是“基本”的粒子,事实上是由更小的粒子组成。如果我们利用更高的能量时,是否会发现这些粒子是由更小的粒子组成的呢?这一定是可能的。但我们确实有一些理论上的原因,相信我们已经拥有,或者说接近拥有自然的终极构件的知识。
用上一章讨论的波粒二象性,包括光和引力的宇宙中的一切都能以粒子来描述。这些粒子有一种称为自旋的性质。考虑自旋的一个方法是将粒子想象成围绕着一个轴自转的小陀螺。然而,这可能会引起误会,因为量子力学告诉我们,粒子并没有任何轮廓分明的轴。粒子的自旋真正告诉我们的是,从不同的方向看粒子是什么样子的。一个自旋为0的粒子像一个点:从任何方向看都一样... -->>
亚里士多德相信宇宙中的所有物质由四种基本元素即土、气、火和水组成。有两种力作用在这些元素上:引力,这是指土和水往下沉的趋势;浮力,这是指气和火往上升的倾向。将宇宙的内容分割成物质和力的这种做法一直沿袭至今。
亚里士多德相信物质是连续的,也就是说,人们可以将物质无限制地分割成越来越小的小块。即人们永远不可能得到一个不可再分割下去的最小颗粒。然而几个希腊人,例如德谟克里特,则坚持物质具有固有的颗粒性,而且认为每一件东西都是由大量的各种不同类型的原子组成(原子在希腊文中的意义是“不可分的”)。争论一直持续了几个世纪,任何一方都没有任何实际的证据。但是1803年英国的化学家兼物理学家约翰·道尔顿指出,化合物总是以一定的比例结合而成的,这一事实可以用由原子聚合一起形成称作分子的个体来解释。然而,直到本世纪初这两种学派的争论才以原子论者的胜利而告终。爱因斯坦提供了其中一个重要的物理学证据。1905年,在他关于狭义相对论的著名论文发表前的几周,他在发表的另一篇文章里指出,所谓的布朗运动——浮在液体中尘埃小颗粒的无规则随机运动——可以解释为液体原子和灰尘粒子碰撞的效应。
当时就有人怀疑,这些原子终究不是不可分割的。几年前,一位剑桥大学三一学院的研究员汤姆孙演示了一种称为电子的物质粒子存在的证据。电子具有的质量比最轻原子的一千分之一还小。他使用了一种和现代电视显像管相当类似的装置:由一根红热的金属细丝发射出电子,由于它们带负电荷,可用电场将其朝一个涂磷光物质的屏幕加速。电子一打到屏幕上就会产生一束束的闪光。人们很快即意识到,这些电子一定是从原子本身里出来的。新西兰物理学家恩斯特·卢瑟福在1911年最后证明了物质的原子确实具有内部结构:它们是由一个极其微小的带正电荷的核以及围绕着它公转的一些电子组成。他分析从放射性原子释放出的带正电荷的α粒子和原子碰撞会引起偏转的方式,从而推出这一结论。
最初,人们认为原子核是由电子和不同数量的带正电的叫做质子的粒子组成。质子是由希腊文中表达“第一”
的词演化而来的,因为质子被认为是组成物质的基本单位。然而,1932年卢瑟福在剑桥的一位同事詹姆斯·查德威克发现,原子核还包含另外称为中子的粒子,中子几乎具有和质子一样大的质量但不带电荷。查德威克因这个发现获得诺贝尔奖,并被选为剑桥龚维尔和基斯学院(我即为该学院的研究员)院长。后来,他因为和其他人不和而辞去院长的职务。一群战后回来的年轻的研究员将许多已占据位置多年的老研究员选掉后,曾有过一场激烈的辩论。这是在我去以前发生的;我在这场争论尾声的1965年才加入该学院,当时另一位获诺贝尔奖的院长奈维尔·莫特爵士也因类似的争论而辞职。
直到大约30年以前,人们还以为质子和中子是“基本”粒子。但是,质子和另外的质子或电子高速碰撞的实验表明,它们事实上是由更小的粒子构成的。加州理工学院的牟雷·盖尔曼将这些粒子命名为夸克。由于对夸克的研究,他获得1969年的诺贝尔奖。此名字起源于詹姆斯·乔伊斯神秘的引语:“Three quarks for Muster Mark!”
夸克这个字应发夸脱的音,但是最后的字母是k而不是t,通常和拉克(云雀)相押韵。
存在有几种不同类型的夸克——有六种“味”,这些味我们分别称之为上、下、奇、粲、底和顶。20世纪60年代起人们就知道前三种夸克,1974年才发现粲夸克,1977年和1995年分别发现底和顶夸克。每种味都带有三种“色”,即红、绿和蓝。(必须强调,这些术语仅仅是标签:夸克比可见光的波长小得多,所以在通常意义下没有任何颜色。这只不过是现代物理学家似乎更富有想像力地命名新粒子和新现象的方式而已——他们不再让自己受限制于希腊文!)一个质子或中子由三个夸克组成,每个夸克各有一种颜色。一个质子包含两个上夸克和一个下夸克;一个中子包含两个下夸克和一个上夸克。我们可以创生由其他种类的夸克(奇、粲、底和顶)构成的粒子,但所有这些都具有大得多的质量,并非常快地衰变成质子和中子。
现在我们知道,不管是原子还是其中的质子和中子都不是不可分的。问题在于什么是真正的基本粒子——构成世界万物的最基本的构件?由于光波波长比原子的尺度大得多,我们不能期望以通常的方法去“看”一个原子的部分。我们必须用某些波长短得多的东西。正如我们在上一章所看到的,量子力学告诉我们,实际上所有粒子都是波,粒子的能量越高,则其对应的波的波长越短。所以,我们能对这个问题给出的最好的回答,取决于我们装置中的粒子能量有多高,因为这决定了我们能看到的尺度有多小。这些粒子的能量通常用叫做电子伏特的单位来测量。
(在汤姆孙的电子实验中,我们看到他用一个电场去加速电子,一个电子从一个伏特的电场所得到的能量即是一个电子伏特。)19世纪,当人们知道如何去使用的粒子能量只是由化学反应——诸如燃烧——产生的几个电子伏特的低能量时,大家以为原子即是最小的单位。在卢瑟福的实验中,α粒子具有几百万电子伏特的能量。更晚的时代,我们获悉如何使用电磁场给粒子提供首先是几百万,然后是几十亿电子伏特的能量。这样我们知道,30年之前以为是“基本”的粒子,事实上是由更小的粒子组成。如果我们利用更高的能量时,是否会发现这些粒子是由更小的粒子组成的呢?这一定是可能的。但我们确实有一些理论上的原因,相信我们已经拥有,或者说接近拥有自然的终极构件的知识。
用上一章讨论的波粒二象性,包括光和引力的宇宙中的一切都能以粒子来描述。这些粒子有一种称为自旋的性质。考虑自旋的一个方法是将粒子想象成围绕着一个轴自转的小陀螺。然而,这可能会引起误会,因为量子力学告诉我们,粒子并没有任何轮廓分明的轴。粒子的自旋真正告诉我们的是,从不同的方向看粒子是什么样子的。一个自旋为0的粒子像一个点:从任何方向看都一样... -->>
本章未完,点击下一页继续阅读